pip install opencv-python
app.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import numpy as np import cv2 import time # creating the videocapture object # and reading from the input file # Change it to 0 if reading from webcam cap = cv2.VideoCapture('vid.mp4') # used to record the time when we processed last frame prev_frame_time = 0 # used to record the time at which we processed current frame new_frame_time = 0 # Reading the video file until finished while(cap.isOpened()): # Capture frame-by-frame ret, frame = cap.read() # if video finished or no Video Input if not ret: break # Our operations on the frame come here gray = frame # resizing the frame size according to our need gray = cv2.resize(gray, (500, 300)) # font which we will be using to display FPS font = cv2.FONT_HERSHEY_SIMPLEX # time when we finish processing for this frame new_frame_time = time.time() # Calculating the fps # fps will be number of frame processed in given time frame # since their will be most of time error of 0.001 second # we will be subtracting it to get more accurate result fps = 1/(new_frame_time-prev_frame_time) prev_frame_time = new_frame_time # converting the fps into integer fps = int(fps) # converting the fps to string so that we can display it on frame # by using putText function fps = str(fps) # putting the FPS count on the frame cv2.putText(gray, fps, (7, 70), font, 3, (100, 255, 0), 3, cv2.LINE_AA) # displaying the frame with fps cv2.imshow('frame', gray) # press 'Q' if you want to exit if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() # Destroy the all windows now cv2.destroyAllWindows() |